Asymptotik und Laufzeitanalyse

Vorsemesterkurs SoSe15 Ronja Düffel

25. März 2015

Laufzeitanalyse

 ${\sf Algorithmen} = {\sf Rechenvorschriften}$

Wir fragen uns:

- Ist der Algorithmus effizient?
- welcher Algorithmus löst das Problem schneller?
- wie lange braucht der Algorithmus noch?

Ziel

Ziel

Die Laufzeit von Algorithmen verlässlich voraussagen.

Die Laufzeit hängt ab von:

- Eingabe
 - Größe
 - Struktur (z.B. vorsortierte Liste)
 - Hardware
 - Architektur
 - Taktfrequenz
 - Software
 - Betriebssystem
 - Programmiersprache
 - Interpreter/Compiler/Assembler

Laufzeit

• Angabe der Laufzeit als Funktion $f: \mathbb{N} \to \mathbb{R}^+$ der Eingabegröße n.

Beispiel

$$T_A(n) = 2n + 1$$

 $T_B(n) = \frac{1}{2}n^2 + 5$

- unabhängig von Hardware und Software
- Laufzeiten nach Wachstumsverhalten klassifizieren.
 - ⇒ auf das Wesentliche beschränken

A symptotik

Was ist das?

Definition (Asymptotische Analyse)

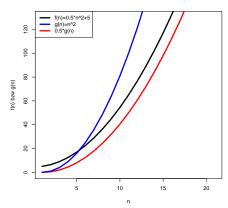
Methode um das Grenzverhalten von Funktionen zu klassifizieren, indem man nur den wesentlichen Trend des Grenzverhaltens beschreibt.

- wir ordnen Funktionen in "Klassen"
- mit Hilfe der Betrachtung des Wesentlichen

Was ist das Wesentliche?

Asymptotisch gleiches Wachstum

$$\Theta(g) := \begin{cases} f: \mathbb{N} \to \mathbb{R}^+ | \text{ es gibt} \\ \text{Konstanten } c_1 > 0 \text{ und} \\ c_2 > 0 \text{ und } n_0 \in \mathbb{N}, \text{ so dass} \\ \text{für alle } n \ge n_0 \text{ gilt:} \\ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \end{cases}.$$



$$f = \Theta(g)$$
, da für $c_1 = 0.5$, $c_2 = 1$, $n_0 = 5$ und $n \ge n_0$ gilt: $c_1 \cdot g(n) < f(n) < c_2 \cdot g(n)$

Asymptotisches Wachstum

Definition (asymptotisch gleiches Wachstum: Θ)

Seien f und g Funktionen $\mathbb{N} \to \mathbb{R}^+$, und der Grenzwert der Folge $\frac{f(n)}{g(n)}$ möge existieren. Dann ist:

$$f = \Theta(g) : \Leftrightarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

- wir betrachten das Wachstum für **große** Werte von *n*
 - ⇒ Konstanten werden uninteressant

O-Notation

Definition (Groß-O)

Seien f und g Funktionen $\mathbb{N} \to \mathbb{R}^+$,

$$\mathcal{O}(g) = \{f | \exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n \geq n_0 : f(n) \leq c \cdot g(n) \}.$$

in Worten:

• $\mathcal{O}(g)$ umfasst alle Funktionen f für die gilt: es existiert eine positive Konstante c und eine natürliche Zahl n_0 , so dass $f(n) \leq c \cdot g(n)$, für alle $n \geq n_0$ gilt.

oder:

• die Funktionswerte von f sind ab einem gewissen $n_0 \le$ einem Vielfachen von g.

 $\mathcal{O}(g)$ ist eine Menge/Klasse von Funktionen wir schreiben trotzdem: $f = \mathcal{O}(g)$

Asymptotisches Wachstum

Definition (asymptotisch langsameres/schnelleres Wachstum " \prec ")

$$f \prec g : \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

"f wächst asymptotisch langsamer als g"

Transitivität: "g wächst asymptotisch schneller als f"

Man schreibt auch: f = o(g) (sprich:,, klein-o")

Grenzwerte

Definition (O-Notation über Grenzwerte)

Möge der Grenzwert der Folge $\frac{f(n)}{g(n)}$ existieren dann ist:

- $f = \mathcal{O}(g)$: $\Leftrightarrow 0 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$; f wächst höchstens so schnell wie g
- $f = \Theta(g) : \Leftrightarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$; f wächst genau so schnell wie g
- $f = o(g) : \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0;$
 - f wächst langsamer als g

$$f = \Theta(g) \Leftrightarrow f = \mathcal{O}(g) \text{ und } g = \mathcal{O}(f)$$

asymptotische Hackordnung

für beliebige Konstanten $0 < \epsilon < 1 < c$ gilt:

$$\underbrace{1} \prec \underbrace{\log \log n \prec \log n} \prec \underbrace{n^{\epsilon} \prec n \prec n^{c}} \prec \underbrace{n^{\log n} \prec c^{n} \prec n! \prec n^{n} \prec c^{c^{n}}}$$

konstant logarithmisch polynomiell exponentiell

hilfreiche innerliche Grundhaltung:

Denke im Großen!

- $1000n = \mathcal{O}(n)$
- $n^2 + 500n = \mathcal{O}(n^2)$
- $\log_a n = \mathcal{O}(\log_b n)$

Lehrsätze:

Die O-Notation,...

- ... verschluckt in einem Produkt konstante Faktoren
- ... verschluckt in einer Summe mit konstant vielen Summanden, alle Summanden, außer den mit dem größten asymptotischen Wachstum
- ... unterscheidet nicht zwischen verschiedenen Basen des Logarithmus

Laufzeitanalyse

Warum?

Annahme: Ein einfacher Befehl benötigt 10^{-9} sec

n	$ n^2$	n^3	n ¹⁰	2 ⁿ	n!
16	256	4.096	$\geq 10^{12}$	65536	$\geq 10^{13} \ \geq 10^{31}$
32	1.024	32.768	$\geq 10^{15}$	$\geq 4\cdot 10^9$	$\geq 10^{31}$
64	4.096	262.144	$\geq 10^{18}$	$\geq 6 \cdot 10^{19}$	·
			·	ľ	mehr als
128	16.384	2.097.152	mehr als	mehr als	10 ¹⁴ Jahre
256	65.536	16.777.216	10 Jahre	600 Jahre	
512	262.144	134.217.728			
1024	1.048.576	$\geq 10^9$			
10 ⁶	$\geq 10^{12}$	$\geq 10^{18}$			
	mehr als	mehr als			
	15 Minuten	10 Jahre			

Algorithmus (zaehle(n))

```
1 function zaehle(n){
2     for(int i=1; i<=n; i++){
3         print i;
4     }
5 }</pre>
```

Laufzeit: Zähle die Anzahl der Befehle.

- $s_{3,3}$: Print-Befehl $\rightarrow 1$
- $s_{2,4}$: for-Schleife $\rightarrow \sum_{i=1}^n s_{3,3} = \sum_{i=1}^n 1 = n$
- $s_{1,5}$: nichts $\to s_{2,4} = n = O(n)$

Algorithmus (maximum(A[0..n]))

```
1 function maximum(A[0..n]) {
2    int max = A[0];
3    for(i = 1; i \le n; i + +) do {
4    if A[i] \ge max {
5        max = A[i];
6    }
7    }
8    return max;
9 }
```

Laufzeit: O(n) Lineare Suche

Algorithmus (insertionsort(A[0..n]))

Neu: Die Laufzeit hängt davon ab, wie häufig $s_{6,8}$ durchlaufen wird.

- Best-case Laufzeit: Die while-Schleife wird nie durchlaufen. A[j-1] > x ist nie erfüllt; A[0..n] ist bereits sortiert
- Worst-case Laufzeit: Die while-Schleife wird immer komplett durchlaufen. A[j-1] > x ist immer erfüllt; A[0..n] ist absteigend sortiert

Best-Case

 $s_{6,7}:0$

$$s_{5,8}$$
: 2+0=2

$$s_{3,9}: 1+1+2+1=5$$

$$s_{2,10}: \sum_{i=1}^{n} (s_{3,9}) = \sum_{i=1}^{n} 5 = 5n = \mathcal{O}(n)$$

Worst-Case

$$s_{5,8}: \sum_{i=0}^{i} (s_{6,7}) = \sum_{i=0}^{i} 2$$

$$s_{3,9}: 1+1+(\sum_{j=0}^{i}2)+1=3+\sum_{j=0}^{i}2=3+2i$$

$$s_{2,10}: \sum_{i=1}^{n} (s_{3,9}) = \sum_{i=1}^{n} (3+2i)$$

$$s_{1,11}$$
: $s_{2,10} = \sum_{i=1}^{n} (3+2i) = \sum_{i=1}^{n} 3 + \sum_{i=1}^{n} 2i = 3n + 2 \cdot \frac{n(n+1)}{2} = 3n + n^2 + n = \mathcal{O}(n^2)$

Beispiele häufiger Laufzeiten (1)

- f = O(1): f wird **nie** größer als ein konstanter Wert; z.B. Zugriff auf das i-te Element eines Arrays.
- $f = O(\log n)$: f wächst ungefähr um einen konstanten Betrag, wenn sich die Eingabelänge verdoppelt.

 Teile-und-Herrsche-Prinzip; z.B. Binärsuche
 - f = O(n): f wächst ungefähr auf das Doppelte, wenn sich die Eingabelänge verdoppelt. jede Eingabestelle sehen; z.B. Lineare Suche
 - $f=O(n^2)$: f wächst ungefähr auf das vierfache, wenn sich die Eingabelänge verdoppelt.
 - z.B. einfache Sortieralgorithmen wie Selection Sort

Beispiele häufiger Laufzeiten (2)

- $f = O(2^n)$: f wächst ungefähr auf das Doppelte, wenn sich die Eingabelänge um eins erhöht. z.B. Untersuchung aller Teilmengen
- f=O(n!): f wächst ungefähr auf das (n+1)-fache, wenn sich die Eingabelänge um eins erhöht.
 - z.B. Untersuchung aller Permutationen
 - Summen: Hintereinander ausführen von Schleifen
 - Produkt: geschachtelte Schleifen

Orientierungsveranstaltung Fachschaft Informatik Freitag, 10.April 2015, 11:00 Uhr Magnus-Hörsaal (hier!)

