Vorsemesterkurs Informatik

Mario Holldack WS2015/16

30. September 2015

Einleitung

2 Aussagenlogik

Mengen

Einleitung

Aussagenlogik

Mengen

Theoretische Informatik: Wieso, weshalb, warum?

- Modellieren und Formalisieren von Problemen (und Lösungen)
- Verifikation (Beweis der Korrektheit)
- Grundlagenforschung

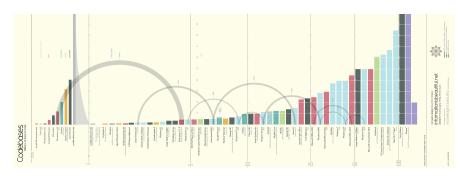


Abbildung: http://www.informationisbeautiful.net/ visualizations/million-lines-of-code/

Überblick

- heute (30.09.):
 - Aussagenlogik
 - Mengen
- Freitag (02.10.):
 - Relationen und Funktionen
 - Beweistechniken
- Dienstag (06.10.):
 - Rekursion
 - Vollständige Induktion

1 Einleitung

2 Aussagenlogik

Mengen

Aussagenlogik: Was ist das?

- Aussage: (Definition folgt gleich)
- Logik: Lehre des vernünftigen Schlussfolgerns
- Beschäftigt sich u.a. mit der Frage:
 - Wie kann man Aussagen miteinander verküpfen?
 - Auf welche Weise kann man formale Schlüsse ziehen und Beweise durchführen?

Warum ist das wichtig?

- Mathematische Beweise
- Modellierung von Wissen (z. B. künstliche Intelligenz)
- Auswertung von Datenbankanfragen
- Kontrollfluss von Computerprogrammen (if-then-else-Konstrukte)
- Logikbausteine in der technischen Informatik (Hardware)
- Verifikation von
 - Schaltkreisen
 - Programmen
 - Protokollen (Kommunikation zwischen Systemen z.B. Internetbanking)

logische Aussagen

Definition (Aussage)

Eine logische Aussage (kurz Aussage) ist ein Satz oder Ausdruck, der entweder wahr (1) oder falsch (0) sein kann.

0 und 1 werden auch Wahrheitswerte genannt.

zum Beispiel:

- Die Sonne scheint.
- Die Zahl n ist durch 3 teilbar.
- 3 > 7
- Wenn der Bewohner rot ist, dann hat er grüne Haare.

logische Aussagen

keine logischen Aussagen sind dagegen:

- 1 + 2:
 es kann kein Wert (wahr oder falsch) zugeordnet werden.
- 2 ist eine kleine Zahl: "klein" ist für Zahlen nicht definiert.
- Aufforderungen und Fragen wie "Komm her!" oder "Was machen wir?"
- "Dieser Satz ist falsch.",
 da dieser Satz weder wahr noch falsch sein kann

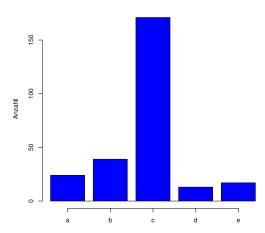
Frage 23: Einhörner und Sonnenstrahlen

Wir nehmen an: Es gibt keine Einhörner. Dann ist die Aussage:

"Alle Einhörner fressen gerne Sonnenstrahlen."...

Alle Einhörner fressen gerne Sonnenstrahlen.

- (a) wahr
- (b) falsch
- (c) nicht definiert
- (d) wahr und falsch
- (e) weiß nicht



atomare Aussagen

Definition

Atomare Aussagen sind (logische) Aussagen, die nicht weiter zerlegt werden können.

Beispiel

Wenn die Sonne scheint, gehe ich an den Strand und sonne mich. Wenn die Sonne scheint, (dann) gehe ich an den Strand und sonne mich.

- A:= "Die Sonne scheint"
- B:= "Ich gehe an den Strand"
- C:= "Ich sonne mich"

$$\varphi = (A \rightarrow (B \land C))$$

Syntax und Semantik der Aussagenlogik

Syntax

Was darf ich in einer Sprache (z. B. in der Aussagenlogik) schreiben?

"Der ökonomische Hund schreibt im Computer."

Semantik

Welche Bedeutung haben Wörter (und Sätze) in einer Sprache?

Unser Ziel: In der Aussagenlogik soll man nur "sinnvolle" Wörter schreiben dürfen.

Syntax der Aussagenlogik

Definition (Syntax der Aussagenlogik)

Basisregeln:

 B_A : Jede atomare Aussage ist eine aussagenlogische Formel (aF).

 B_0 : **0** ist eine aF.

 B_1 : 1 ist eine aF.

Rekursive Regeln:

 R_N : Wenn φ eine aF ist, dann ist auch $\neg \varphi$ eine aF.

• Wenn φ eine aF ist und ψ eine aF ist, dann sind

 R_K : $(\varphi \wedge \psi)$,

 R_D : $(\varphi \lor \psi)$,

 R_l : $(\varphi \to \psi)$,

 R_B : und $(\varphi \leftrightarrow \psi)$ ebenfalls aF.

Semantik der Aussagenlogik

Definition (Semantik der Negation, ¬)

Die Formel $\neg A$ (bedeutet: "nicht A") ist genau dann wahr, wenn A falsch ist.

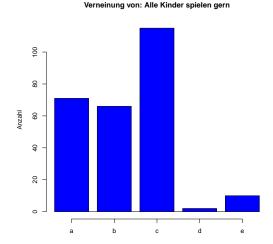
Wahrheitstabelle:

Α	$\neg A$
0	1
1	0

Frage 21: Verneinung von: "Alle Kinder spielen gern."

(a) Kein Kind spielt gern.

- (b) Alle Kinder spielen nicht gern.
- (c) Nicht alle Kinder spielen gern.
- Alle Kinder hassen Spiele.
- (e) weiß nicht.



Konjunktion

Definition (Semantik der Konjunktion, A)

Die Formel $(A \land B)$ (bedeutet: "A und B") ist genau dann wahr, wenn sowohl A als auch B wahr ist.

Wahrheitstabelle:

Α	В	$(A \wedge B)$
0	0	0
0	1	0
1	0	0
1	1	1

Beispiel

A := "Alice hat einen Hund.", <math>B := "Bob hat eine Katze."

 $(A \wedge B) =$ "Alice hat einen Hund und Bob hat eine Katze."

Disjunktion

Definition (Semantik der Disjunktion, V)

Die Formel $(A \lor B)$ (bedeutet: "A oder B") ist genau dann wahr, wenn mindestens eine der beiden Aussagen A oder B wahr sind.

Α	В	$(A \lor B)$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Beispiel

A := "Alice hat einen Hund.", B := "Bob hat eine Katze."

 $(A \lor B) =$ "Alice hat einen Hund **oder** Bob hat eine Katze."

Implikation

Definition (Semantik der Implikation, \rightarrow)

Die Formel $(A \rightarrow B)$ (bedeutet: "Wenn A, dann B") ist genau dann wahr, wenn A falsch oder B wahr ist.

Wahrheitstabelle:

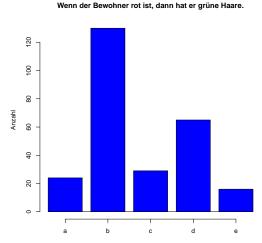
$$\begin{array}{c|c|c|c} A & B & (A \to B) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

Beispiel

 $(A \rightarrow B) =$ "Wenn Alice in der Klausur die Note 4.0 schreibt, dann hat Alice bestanden."

"Wenn der Bewohner rot ist, dann hat er grüne Haare."

- (a) Wenn der Bewohner nicht rot ist, dann hat er keine grünen Haare.
- (b) Wenn der Bewohner keine grünen Haare hat, dann ist er nicht rot.
- (c) Wenn der Bewohner grüne Haare hat, dann ist er rot.
- (d) Alle der obigen
 Schlussfolgerungen sind richtig.
- (e) weiß nicht



Biimplikation

Definition (Semantik der Biimplikation, \leftrightarrow)

Die Formel $(A \leftrightarrow B)$ (bedeutet: "A genau dann, wenn B") ist genau dann wahr, wenn Aussagen A und B beide falsch oder beide wahr ist.

$$\begin{array}{c|c|c|c} A & B & (A \leftrightarrow B) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

Beispiel

 $(A \leftrightarrow B) =$ "Alice hat eine Note zwischen 1.0 und 4.0 **genau dann,** wenn Alice die Prüfung bestanden hat."

Erfüllbarkeit und Allgemeingültigkeit

Definition (Erfüllbarkeit)

Eine aussagenlogische Formel φ heißt **erfüllbar**, wenn es (mindestens) eine Belegung der Variablen gibt, sodass die Formel den Wahrheitswert 1 hat.

z.B.
$$(A \wedge B)$$

Definition (Unerfüllbarkeit)

 φ heißt unerfüllbar, wenn es keine erfüllende Belegung gibt.

z.B.
$$(A \wedge \neg A)$$

Definition (Allgemeingültigkeit)

 φ heißt allgemeingültig (auch Tautologie), wenn φ für jede Belegung den Wahrheitswert 1 annimmt.

z.B.
$$(A \lor \neg A)$$

Äquivalenz

Definition

Zwei aussagenlogische Formeln φ und ψ heißen **äquivalent** (\equiv), wenn die Wahrheitswerte für **alle** passenden Belegungen für φ und ψ identisch sind.

Beispiel

Für
$$\varphi = (\neg A \lor B)$$
 und $\psi = (A \to B)$ gilt: $\varphi \equiv \psi$

			φ	$ \hspace{.05cm}\psi\hspace{.05cm}$
Α	В	$\neg A$	$(\neg A \lor B)$	$(A \rightarrow B)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

1 Einleitung

- Aussagenlogik
- Mengen

Mengen: Wieso, weshalb, warum?

- Wir wollen:
 - allgemeingültige Aussagen treffen.
 - "allgemeingültige" Lösungen finden.
- Wir benötigen die Möglichkeit:
 - Objekte/Konzepte zusammenzufassen
 - anhand der für die Problemstellung relevanten Eigenschaften
 - über die wir Aussagen machen können
 - deren Eigenschaften und Aussagen wir beweisen können
- gibt es in vielen Programmiersprachen als Datentyp/Container (set)

Mengen

Definition (Menge (nach CANTOR, 1895))

Eine Menge M ist eine Zusammenfassung von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens, welche "Elemente der Menge M"genannt werden, zu einem Ganzen.

zum Beispiel:

- die Menge aller natürlichen Zahlen N
- die Menge aller Vorkursteilnehmer
- die Menge aller Bücher in der Informatikbibliothek
- die Menge aller aussagenlogischer Formeln

Beschreibung bzw. Definition

Notation:

 $m \in M$: \Leftrightarrow m ist Element der Menge M.

 $m \notin M$: \Leftrightarrow m ist kein Element der Menge M.

• extensional, aufzählen der Elemente

z.B.
$$M_1 := \{0, 1, 2, 3, 4, 5, 6, 7\} = \{0, 1, 2, \dots, 7\}$$

• *intensional*, Angabe von charakteristischen Eigenschaften der Elemente

z.B.
$$M_1 := \{x | x \in \mathbb{N}, 0 \le x \le 7\}$$

Definition (leere Menge)

Die leere Menge \emptyset ist die Menge, die kein(e) Element(e) enthält.

$$\emptyset = \{\}$$

Beachte:

$$\emptyset \neq \{\emptyset\}$$

Eigenschaften

- Alle Elemente einer Menge sind verschieden, d. h. kein Wert kann "mehrfach" vorkommen.
- Elemente einer Menge haben keine feste Reihenfolge.
- ullet Eine Menge M kann auf verschiedenen Arten beschrieben werden

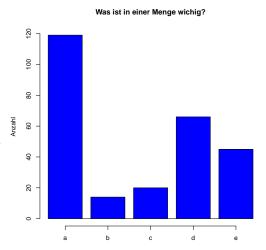
z.B:

$$\begin{array}{lll} M & = & \{1,3,5,7\} \\ & = & \{3,5,7,1\} \\ & = & \{1,1,5,3,5,7\} \\ & = & \{x|x \in \mathbb{N}, 1 \leq x \leq 7, x \text{ ist ungerade}\} \end{array}$$

Mengen können auch "verschiedenartige" Elemente enthalten z.B.: M = {7, Haus, (Herz, 3), -4, {I, m, n}, 9}

Frage 13: Was ist in einer Menge wichtig?

- (a) Das Vorhandensein der Elemente
- (b) Die Reihenfolge der Elemente
- (c) Die Häufigkeit des Auftretens eines Elementes
- (d) Alle drei der oben genannten Eigenschaften
- (e) weiß nicht



Mengenalgebra I

Definition (Gleichheit, Teilmenge, Obermenge)

Seien M und N Mengen.

- M und N sind genau dann gleich (kurz: M = N), wenn sie dieselben Elemente enthalten.
- M ist genau dann eine **Teilmenge** von N (kurz: $M \subseteq N$), wenn jedes Element von M auch ein Element von N ist.
- M ist genau dann eine **echte Teilmenge** von N (kurz: $M \subset N$), wenn jedes Element von M auch ein Element von N ist, aber nicht jedes Element von N auch ein Element von M (kurz: $M \subseteq N$ und $M \neq N$).
- M ist genau dann eine **Obermenge** von N ($M \supseteq N$), wenn N eine Teilmenge von M ist (kurz: $N \subseteq M$).

Satz 1

Satz

Seien L, M und N Mengen, für die L \subseteq M und M \subseteq N gilt. Dann gilt auch L \subseteq N.

Beispiel

Sei $L = \{Stein, Schere, Papier\}$, $M = \{Stein, Schere, Papier, Eidechse\}$ und $N = \{Stein, Schere, Papier, Eidechse, Spock\}$.

Dann gilt:

- $L \subseteq M$
- M ⊆ N
- \bullet $L \subset N$

Satz 2

Satz

Seien M und N Mengen. M = N gilt genau dann, wenn $M \subseteq N$ und $N \subseteq M$ gelten.

Beispiel

• Sei $M = \{3,4,5\}$ und $N = \{3,4,5\}$. Dann ist:

$$M = N$$
 und $M \subseteq N$ und $N \subseteq M$

• Sei $M = \{3, 4, 5\}$ und $N = \{3, 4\}$. Dann ist:

$$N \subseteq M$$
 und $M \nsubseteq N$ und $M \neq N$

Mengenalgebra II

Definition (Schnitt, Vereinigung, Differenz...)

Seien M und N Mengen.

• Der Schnitt von M und N ist die Menge

$$M \cap N := \{x | x \in M \text{ und } x \in N\}.$$

• Die Vereinigung von M und N ist die Menge

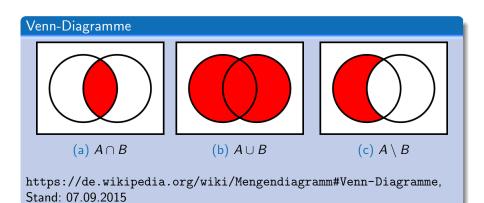
$$M \cup N := \{x | x \in M \text{ oder } x \in N\}.$$

• Die **Differenz** von M und N ist die Menge

$$M \setminus N := \{x | x \in M \text{ und } x \notin N\}.$$

• M und N heißen **disjunkt**, wenn sie kein gemeinsames Element enthalten (kurz: $M \cap N = \emptyset$).

Venn-Diagramme



Mächtigkeiten

Definition

- Eine Menge M heißt **endlich**, wenn sie nur endlich viele Elemente enthält, d.h. es gibt eine Zahl $n \in \mathbb{N}$, sodass M genau n viele Elemente enthält.
- Die Anzahl der Elemente einer Menge M bezeichnet man auch als Mächtigkeit der Menge M (in Zeichen: |M|).

$$|M| := egin{cases} \textit{Anzahl der Elemente in } M, & \textit{falls } M \textit{ endlich ist} \\ \infty, & \textit{sonst} \end{cases}$$

z.B.:

- $|\{4,7,2\}|=3$
- $|\{7, Haus, (Herz, 3), -4, \{I, m, n\}, 9\}| = 6$
- ullet $|\emptyset|=0$ aber $|\{\emptyset\}|=1$

Satz 3 I

Satz

Seien M und N endliche Mengen. Es gilt $|M \cup N| = |M| + |N|$ genau dann, wenn M und N disjunkt sind.

Satz 3 II

Beispiel

• Sei $M = \{Stein, Papier, Schere\}$ und $N = \{3, Haus, Spock, 5\}$ Dann ist:

$$M \cap N = \emptyset$$
 und $M \cup N = \{Stein, Papier, Schere, 3, Haus, Spock, 5\}$ und $|M \cup N| = 7 = 3 + 4 = |M| + |N|$

Sei M = {Stein, Papier, Schere} und
 N = {Schere, Haus, Spock, 5}
 Dann ist:

$$M \cap N = \{Schere\}$$
 und $M \cup N = \{Stein, Papier, Schere, Haus, Spock, 5\}$ und $|M \cup N| = 6 \neq 3 + 4 = |M| + |N|$

Die Elemente der Schnittmenge werden doppelt gezählt.

Wie geht es weiter?

Übungsaufgaben

- Wann? ab 13:00 Uhr bis 16:00 Uhr
- Wie?
 Gemeinsam und mit Unterstützung durch die besten der Besten
- Wo?

